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We show that the condition of isotropy of pressure in the case of Bianchi I 
space-time filled with a perfect fluid reduces via a suitable scale transformation 
to a linear second-order differential equation, which admits as particular solutions 
those of Friedmann, Robertson, and Walker. These particular solutions are then 
used for generating many new local rotational symmetry Bianchi I solutions. 
Some of their physical properties are then studied. 

1. I N T R O D U C T I O N  

The main difficulty in theory o f  general relativity is essentially due to 
the nonlineari ty o f  the field equations; this is particularly obvious in the 
search for analytical solutions o f  Einstein's field equations. To remedy such 
a situation we have (Hajj-Boutros,  1984, 1985, 1986a-c; Hajj-Boutros and 
Sfeila, 1986) reduced the field equations to first-order Riccati equations. 

In this work we have (via a suitable scale t ransformation)  reduced in 
a s traightforward manner  the field equation to a linear second-order  differen- 
tial equation,  in the case o f  Bianchi I space-t ime filled with a perfect fluid 
and possessing the local-rotat ional  symmetry (LRS) (Kramer  et al., 1980). 

This linear differential equat ion is a result o f  the condit ion of  isotropy 
of  pressure and may be written as 

A"/A=B"/B (1) 

where prime denotes d/d% and A and B are the cosmic scale functions 
occurr ing as metric funct ions in the LRS Bianchi I space-time. 

The main result for such a linear differential equat ion is the possibility 
of  solutions like 

a(~-) : B(~-) (2) 
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In this case the solutions are of Friedmann (1922; 1924)-Robertson (1935, 
1936)-Walker (1936) type and constitute particular solutions (1). 

More general solutions are those where A(r)  r B ( r ) ,  i.e., the solutions 
of Bianchi-type (LRS) I in the Bianchi-Behr (Bianchi, 1897; Estabrook et 
al., 1968) classification. By more general solutions we mean solutions that 
are not isotropic, but only homogeneous (FRW solutions are isotropic and 
homogeneous space-time). 

We show in the following section that solutions like (2) serve in fact 
to generate new solutions, which in general are of Bianchi type I. 

3. FIELD EQUATIONS AND GENERATION TECHNIQUE 

The metric for LRS Bianchi I space-time is of the form (MacCallum, 
1979) 

ds 2 = - d t Z +  A2(t )  dx2+ B2( t ) (dy2+ dz 2) (3) 

In the case of an energy-momentum tensor of a perfect fluid type, i.e., 

Tab = (t x +p)UaUb +Pgab, UaU ~ = --1 (4) 

where u ~ is the 4-vector velocity, p the pressure, and /x the mass-energy 
density, the Einstein field equations 

Rab -- �89 Rgab = XO Tab (5) 

are written as 

2~+~-~=  -XoP  (6) 

i~ A A f~ 
- - + - - +  . . . . .  XoP (7) 
B A A B 

2 ~  -~+ ~5 = Xop (8) 

where the dot denotes d / d t ,  and Xo is Einstein's gravitational constant. 
Elimination of p from equations (6) and (7) gives the condition of 

isotropy of pressures, 

B" A" A ' B '  B '2 
~- =0  (9) 

B A A B  - ~  

Making the scale transformation 

in (9), we get 

dr = dt / B (lO) 

A " / A =  B " / B  (11) 
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Equation (11), which is a linear second-order differential equation in A or 
B, admits as particular solution 

A(~') = B(~-) (12) 

In this case the metric (3) becomes 

ds z = - d t 2  + A2(~')(dx2 + dy2 + dz 2) (13) 

which is the zero-curvature FRW line element. We call these particular 
solutions 

A(T) = B(~-) = a0-)  (14) 

It is to be noted that the metric (13) may be written in a conformally flat 
form, and thus, by taking into account the formulas (10) and (12) and we 
obtain 

ds 2 = A2(T)(_dT2 + dx2 + @2+ dz 2) (15) 

we note here that A0-) = B( r )  = c, where c is a constant, is also a particular 
solution to (11) and in this case (3) is reduced to 

ds 2 = _dt2 + c2(dx2 + @2+ dz ~) (16) 

which is in fact a flat metric. 
Going back now to the formula (11) and seeking for solutions like 

A(r )  = a(~-)A~(r) (17) 

o r  

we obtain successively 

B(7) = a(r (18) 

A(r )=  a(~)(f d__z_~ ~' a~(~) + c2) (19) 

f c3 d~- \ B(r)  = a(7)  _-57,,-2-+ c4} aIur) / 
(20) 

where cl, c2, c3, and r are constants of  integration. It is obvious that A ( r )  
and B ( r )  obtained from (19) and (20) are different from a(~'). 

Therefore, starting from FRW or vacuum flat solutions our ansatz 
allows us to obtain more general ones. 
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3. G E N E R A T E D  S O L U T I O N S  

3.1. Solutions Generated from Fiat Metric 

In the case of  a flat metric we have 

ds  2 = - d r  2 + dx  2 + dy 2 + d z  2 (21) 

The metric (21) is a part icular  case o f  a F R W  space-time where a ( t )  = 1. 

Applying now the formulas (10) and (20), we get 

B ( t )  = (c3t  + c4) (22) 

A ( t )  stays invariable, i.e., 

a ( t )  = 1 (23) 

Without  loss o f  generality we can set c3 = c4 = 1; thus we obtain 

ds  2 = - d r  2 + d x  2 + t 2 ( d y  2 + d z  2) (24) 

This solution is that obtained by Tupper  (1983). 
For  this solution the pressure p and the mass-density /x satisfy the 

relation 

/, = p = 1/(4t  2) (25) 

I f  we apply both formulas (19) and (20) we get 

ds  2 = - d t  2 + t 2 ( d x  2 + d y  2 + d z  2) (26) 

For  such a metric the equat ion o f  state is o f  the form 

/z + 3p = 0 (27) 

where 

Xo/Z = 3 / t  z (28) 

XoP = - 1 / t  2 (29) 

The dominan t  energy condit ions of  Hawking and Ellis (1973), i.e., 

~z>0,  / z + 3 p > 0  (30) 

are then satisfied. 
Finally, we note that a class o f  LRS Bianchi I solutions may be obtained 

by applying the formulas (19) and (20) as many  times as we need, and the 
line element for the class o f  solutions obtained is of  the form 

ds 2 = - d t Z  q - t ~' dxZ + t~2(dy2 + dz '2) (31) 

where cq and c~2 are arbitrary integers. 
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Such a solution may be identified with that obtained by Dunn and 
Tupper (1980). 

Note that the solution (24) represents a "barrel"  singularity (MacCal- 
lum, 1971). For the metric (31) the singularity depends on the sign of a~ 
and o~ 2 . 

3.2. Solutions Generated from That of Einstein and de Sitter 

The Einstein-de Sitter (1932) solution reads 

ds  z = - d t  2 + t 4 /3 (dx  2 + dy  2 + d2 2) (32) 

which is usually interpreted as a zero-pressure, perfect fluid model. 
Applying now formulas (10) and (19), we obtain 

a(  t) = t2/3(-cl/ t + c2) (33) 

where c~ and c2 are two constants of integration; B(t) stays invariable, i.e., 

B(t) = t 2/3 (34) 

and the LRS Bianchi I solution reads 

ds 2 = _dt  2 +/4/3(_ C1/ t + C2) 2 dx 2 + t4/3( dy 2 q- dz 2) (35) 

Inserting now the values of A(t)  and B(t) obtained from the formulas (33) 
and (34) into the formulas (6) and (8), we obtain 

p = 0  (36) 

Cl 
4_( 2_~ - c l ~  c2t2 ) (37) Xo/X = 3 t k 3 t  

/z is positive for 

cl, c2 > 0 (38) 

t >- cl/c2 (39) 

Hence, we obtain a realistic physical model if the values of t are bounded 
by the inegalities (38) and (39). Furthermore, the shear tensor o- 0 has the 
components (Hajj-Boutros, 1086b) 

=2_A2(a' 3 \A-B~B)  = ' 4 / 3 ( - c 1 + c 2 ~ 2 ( ~ - ~ )  (40) 
~ s t / \ - c ~ t +  

B2[B'  A"~=t4/3( ~-Cl ) (41) 
Ov22 = IT33 = y ~ A  - A )  \_Cl t ..[_ ? 

~r o = 0 for all other i and j 

and the o-~j become zero when t + m  [with A( t )=  c2B(t) when t + m ] .  
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3.3. Solutions Generated from That of  Tolman 

The radiation ~ = 3p solution of Tolman (1934) reads 

ds 2 = - d t  2 + t (dx  2 + dy 2 + dz 2) (42) 

which belongs to the FRW class of solutions. 
Applying again the formulas (10) and (19), we obtain 

A(  t) = t l / 2 ( - 2 c l t - 1 / 2  + C2) (43) 

B ( t )  stays invariable, i.e., 

B ( t )  = t 1/2 (44) 

The new LRS Bianchi I solution reads 

ds 2 = - d t 2  + t ( - 2 c ,  t-l/2 + c2) 2 dx2 + t( dy2 + dz 2) (45) 

Inserting now the new values of  A ( t )  and B ( t )  into the formulas (6) and 
(8), we obtain 

1 
XoP 4t 2 (46) 

1_1_( -2Cl t  -1/2 

XolX - 4t2 \_2c~ t -1/2 + c2) (47) 

For c2 = 0 we obtain a stiff matter solution 

/x = p  (48) 

For clc2 > 0 and ~ > 3 c2/2c~ the mass energy density/z is always bounded 
by the double inegality 1/(4t2)<-lx<-3/(4t2); hence, the strong energy 
conditions of  Hawking and Ellis, i.e., 

/x > 0 (49) 

-p~ -< p <- tz (50) 

are always satisfied. 
The equation of state is of the form 

-2c1(1/4XoP)- l /4  + 3c2 
(51) 

tx = P - 2 c l ( 1 /  4XoP )-l/4 + c2 

Hence it is not of the form 

p =  ( y - 1 ) / ~  (1--< y--<2) 

and this solution belongs to the rare solutions of this type existing in the 
literature. 
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